CONFORMATIONAL ANALYSIS OF NUCLEOSIDE ANALOGS OF SIX-MEMBERED HETEROCYCLES CONTAINING OXYGEN AND/OR SULFUR

Walter A. Szarek,* Dolatrai M. Vyas, and Barbara Achmatowicz

Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada (Received in USA 5 February 1975; received in UK for publication 1 April 1975)

A project in this laboratory is concerned with the synthesis and biological examination of nucleoside analogs of five- and six-membered heterocycles such as compounds 1-6.² Some of these compounds exhibit antitumor activity.³ Moreover, they are of further significance because of their interesting stereochemical properties; for example, it has been found⁴ that the conformational equilibrium, in chloroform-<u>d</u> at ambient temperature, of the 3-substituted 1,4-oxathiane <u>6</u> contains ~90% of the conformer having the purine molety in an axial orientation, whereas in the case of the regioisomer <u>5</u>, there is a preponderance of the equatorial form. The high proportion of the axial conformer I in the case of compound <u>6</u> is highly

remarkable in view of the observations that, although some <u>N</u>-(glycopyranosyl)imidazoles,⁵ in chloroform, and 2-azido- and 2-isocyanato-tetrahydropyrans,⁶ in carbon tetrachloride or acetonitrile, exist preponderantly in the conformation having the nitrogen substituent in the axial orientation, in the case of several pyranosyl nucleosides of bulky heterocyclic bases such as 6-benzamidopurine,⁷ indole,⁸ and benzotriazole,⁹ there is a preponderance of the equatorial form. Of relevance to the present work are the studies on 2-substituted 1,4-oxathianes by Foster and coworkers,¹⁰ who discussed the conformational behavior in terms of the anomeric effect and steric factors, and by Zefirov and coworkers,¹¹ who also postulated a repulsive interaction referred to as the "hockey-stick" effect. The conformational peculiarities observed in compounds 5 and 6 promoted a systematic investigation of nucleoside analogs of saturated six-membered rings containing one or two hetero atoms. Here we report preliminary results with compounds 1 - 6.

In Table I are summarized data on the conformational equilibrium of compounds 1-6 obtained by pmr spectroscopy; the proportion of the axial conformer I was estimated using the equation¹¹ cited in the footnote to the Table. A limitation of the method in the present work arises from the choice of appropriate values for J_{aa} , J_{ee} , J_{ae} , and J_{ea} ; moreover, the spectroscopic data have been analyzed on the assumption that the six-membered heterocycles adopt the chair conformation (compare Refs. 11 and 15), although it is recognized that the hetero atoms can cause a puckering or flattening distortion.¹⁶

The first noteworthy feature is the observation of a preponderance of the equatorial form in the case of the tetrahydropyran and thiane derivatives 1 and 2. The results indicate that for these compounds, in the axial conformer I, the interaction of the purine moiety with the <u>syn</u>-axial hydrogens overcomes the anomeric effect;¹⁷ the significantly smaller proportion of the axial conformer in the case of the thiane 2 is attributable to a difference between the interactions^{17,18} in the O-C-N and S-C-N fragments of 1 and 2, respectively. Interestingly, replacement of the C-4 methylene group in 1 and 2 by oxygen and sulfur to give the 1,4-dioxane 3 and 1,4-dithiane 4, respectively, leads, in each case, to an increase in the proportion of the axial conformer; this phenomenon may be viewed, at least partially, as a manifestation of the gauche effect¹⁸ in the O(S)-C-C-N fragments.

Probably the most puzzling conformational behavior of the present series of compounds is that exhibited by the pair of 1,4-oxathiane regioisomers 5 and 6. A relevant factor in a possible rationalization of the preponderance of the equatorial and axial forms for 5 and 6, respectively, is the geometry of the 1,4-oxathiane ring. On the basis of a smaller C-S-C bond angle (compared with C-O-C) and a longer C-S bond length (compared with C-O), the ring can adopt a distorted chair conformation in which the axial substituents on C-2 and C-6 are inward-pointing, and those on C-3 and C-5 are outward-pointing (compare Ref. 10); thus, in the axial conformers, the interaction of the purine molety with the <u>syn</u>-axial hydrogen would be expected to be greater in 5 than in 6. Another suggestion to account for the observed results invokes the possible formation of a hydrogen bond between H-8 of the purine molety and the oxygen of the 1,4-oxathiane ring as a stabilizing effect; accordingly, in the case of 5, the equatorial conformer would be stabilized (see <u>5a</u>), whereas, in the case of <u>6</u>, the axial conformer would be stabilized (see <u>6a</u>). The very high proportion of the axial conformer in

the case of $\underline{6}$ compared with that in $\underline{2}$ is particularly spectacular.

Compound					~~~		
		Chemical shift of H _χ (τ)	Solvent	J _{AX} +J _{BX} (Hz)	"Optimal set" of coupling constants (Hz)	% axial conformer I	
~~ <u>Ń</u>		4.17	CDC13	11.5	$J_{aa} = 12, J_{ee} = 2,$	35	
	1	4.22	CD3CH	12.4	Jae=Jea=3	26	
× ×	•	4.23	CDC13	13.0	J =J =J =2.5, ae ee ea (Dof 12)	6	
	~	4.23	CD3CN	13.2	J #11 aa	4	
∕°∕́́́́́́́́́́́	_	3.92	CDC1 3	8.5	J =9.44, J =0.9, aa ea (p.f. 15)	44	
	3	3.98	CD 3CN	8.4	Jee=Jae=2.78	45	
~ ⁸ ~~́́́́́		4.06	CBC13	10.0	Jealee = 3,	62	
×s/	4~	4 ∼ −	CD3CN+	-	J _{aa} =10.6, J _{ae} =5.8	-	
	5 ~	3,95	CDC13	11,5	Jac=Jec=Jea=2.5,	24	
s		4,00	CD3CN	12,2	ad ee cu (Ref. 11 J_=11 aa) 15	
	<u>6</u>	4,43	CDC1 3	6,0	J	88	
		4,40	CD3CN	5,2	J_=1] aa) 98	

TABLE I. Conformational Equilibrium Data* of Compounds 1-6.

The pmr spectra were recorded on a Bruker HX-60 spectrometer with TMS as the internal standard. The position of the conformational equilibrium was determined using the equation¹¹ $|J_{AX}+J_{BX}|=N_1(J_{ea}+J_{ee})+(1-N_1)(J_{aa}+J_{ae})$; the width or half-height width of the signal H_X was taken as the sum of coupling constants $|J_{AX}+J_{BX}|$. [†]Compound <u>4</u>, was insufficiently soluble in CD₃CN.

Acknowledgments

The authors thank the National Research Council of Canada for financial support, and Professor S. Wolfe and Dr. M.-H. Whangbo for helpful discussions.

REFERENCES

- 1. On leave (1973-74) from the Department of Chemistry, University of Warsaw, Poland.
- D.M. Vyas and W.A. Szarek, <u>Carbohyd. Res.</u>, <u>30</u>, 225 (1973); W.A. Szarek, D.M. Vyas, and
 B. Achmatowicz, <u>J. Heterocycl. Chem.</u>, in press.
- 3. W.A. Szarek, D.M. Vyas, B. Achmatowicz, and A. Bloch, unpublished results.
- W.A. Szarek, D.M. Vyas, A.-M. Sepulchre, S.D. Gero, and G. Lukacs, <u>Can. J. Chem.</u>, <u>52</u>, 2041 (1974).
- R.U. Lemieux, <u>Pure Appl. Chem.</u>, <u>25</u>, 527 (1971); H. Paulsen, Z. Györgydeák, and M. Friedmann, <u>Chem. Ber.</u>, <u>107</u>, 1590 (1974).
- 6. N.S. Zefirov and N.M. Shekhtman, Zh. Org. Khim., 6, 863 (1970).
- H. Yanagisawa, M. Kinoshita, S. Nakada, and S. Umezawa, <u>Bull. Chem. Soc. Jap.</u>, <u>43</u>, 246 (1970).
- 8. R.J. Cushley, S.L. Lipsky, W.J. McMurray, and J.J. Fox, Chem. Commun., 1611 (1968).
- 9. G. Garciá-Muñoz, J. Iglesias, M. Lora-Tamayo, R. Madroñero, and M. Stud, <u>J. Heterocycl</u>. <u>Chem.</u>, <u>6</u>, 5 (1969).
- K.W. Buck, F.A. Fahim, A.B. Foster, A.R. Perry, M.H. Qadir, and J.M. Webber, <u>Carbohyd</u>. <u>Res.</u>, <u>2</u>, 14 (1966).
- N.S. Zefirov, V.S. Blagoveshchensky, I.V. Kazimirchik, and N.S. Surova, <u>Tetrahedron</u>, <u>27</u>, 3111 (1971). See also N.S. Zefirov and I.V. Kazimirchik, <u>Usp. Khim.</u>, <u>43</u>, 252 (1974).
- N.S. Zefirov, V.S. Blagoveshchensky, I.V. Kazimirchik, and O.P. Yakovleva, <u>Zh. Org. Khim.</u>, <u>7</u>, 594 (1971).
- 13. N.S. Zefirov and M.A. Fedorovskaya, <u>Zh. Org. Khim., 5</u>, 158 (1969).
- 14. A. Ohno, Y. Ohnishi, and G. Tsuchihashi, J. Amer. Chem. Soc., 91, 5038 (1969).
- C. Romers, C. Altona, H.R. Buys, and E. Havinga, in "Topics in Stereochemistry," E.L.
 Eliel and N.L. Allinger, Ed., John Wiley and Sons, New York, 1969, p. 39.
- 16. J.B. Lambert, <u>Accounts Chem. Res.</u>, <u>4</u>, 87 (1971).
- R.U. Lemieux, in "Molecular Rearrangements," Part 2, P. de Mayo, Ed., John Wiley and Sons, New York, 1964, p. 709; E.L. Eliel, <u>Angew. Chem., Int. Ed. Engl</u>., 11, 739 (1972).
- 18. S. Wolfe, Accounts Chem. Res., 5, 102 (1972).